A necessary condition for four-coloring a planar graph

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A practical algorithm for [r, s, t]-coloring of graph

Coloring graphs is one of important and frequently used topics in diverse sciences. In the majority of the articles, it is intended to find a proper bound for vertex coloring, edge coloring or total coloring in the graph. Although it is important to find a proper algorithm for graph coloring, it is hard and time-consuming too. In this paper, a new algorithm for vertex coloring, edge coloring an...

متن کامل

Planar Graph Coloring

We show that the game chromatic number of a planar graph is at most 33. More generally, there exists a function f: f\l --+ f\l so that for each n E f\l. if a graph does not contain a homeomorph of Kn• then its game chromatic number is at most f(n). In particular, the game chromatic number of a graph is bounded in terms of its genus. Our proof is motivated by the concept of p-arrangeability, whi...

متن کامل

Coloring the square of a planar graph

We prove that for any planar graph G with maximum degree , it holds that the chromatic number of the square of G satisfies (G) 2 þ 25. We generalize this result to integer labelings of planar graphs involving constraints on distances one and two in the graph. 2002 Wiley Periodicals, Inc. J Graph Theory 42: 110–124, 2003

متن کامل

A necessary condition for multiple objective fractional programming

In this paper, we establish a proof for  a  necessary condition for  multiple objective fractional programming. In order to derive the set of necessary conditions, we employ an equivalent parametric problem. Also, we  present the related semi parametric model.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory

سال: 1966

ISSN: 0021-9800

DOI: 10.1016/s0021-9800(66)80058-3